If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6t^2+24t=0
a = -6; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-6)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-6}=\frac{-48}{-12} =+4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-6}=\frac{0}{-12} =0 $
| Y=105+6.25x | | 7p-5p=-16-2p | | 50-(11x)=21+(8x) | | -2y/5=14 | | x+6=-2x+4x | | 11y-6=9y+324 | | -33=7-2k | | 5/2x=-35 | | -6+10k=10k-6 | | (0.25−0.5)2x−6.5=8.7 | | 40=4/5(m+7;)m | | -3h+10h+2=-10+7h | | 9x-31=x | | 23-x=244 | | 7+a/2=12 | | 2(-3x+8)=3x-2 | | F(n)=8 | | -351=-9(14+1/2x) | | F(n)=4×2 | | 43y−6=41y+10 | | 8+9w=7w-6 | | -9+9w=9w | | 8-10-12x=-18 | | m+16/1/2=-20 | | F(n)=4 | | 5-10b=-10b+5 | | -3d-1=-2d-10 | | 11x-55=121 | | m+1612=-20 | | 168=40-x | | -2p-1=-39 | | 7/12y+22=7- |